Conserving woodland caribou habitat while maintaining timber yield: a graph theory approach

The fragmentation and loss of old-growth forest has led to the decline of many forest-dwelling species that depend on old-growth forest as habitat. Emblematic of this issue in many areas of the managed boreal forest in Canada is the threatened woodland caribou (Rangifer tarandus caribou (Gmelin, 178...

Full description

Bibliographic Details
Published in:Canadian Journal of Forest Research
Main Authors: Ruppert, Jonathan L.W., Fortin, Marie-Josée, Gunn, Eldon A., Martell, David L.
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 2016
Subjects:
Online Access:http://dx.doi.org/10.1139/cjfr-2015-0431
http://www.nrcresearchpress.com/doi/full-xml/10.1139/cjfr-2015-0431
http://www.nrcresearchpress.com/doi/pdf/10.1139/cjfr-2015-0431
Description
Summary:The fragmentation and loss of old-growth forest has led to the decline of many forest-dwelling species that depend on old-growth forest as habitat. Emblematic of this issue in many areas of the managed boreal forest in Canada is the threatened woodland caribou (Rangifer tarandus caribou (Gmelin, 1788)). We develop a methodology to help determine when and how timber can be harvested to best satisfy both industrial timber supply and woodland caribou habitat requirements. To start, we use least-cost paths based on graph theory to determine the configuration of woodland caribou preferred habitat patches. We then developed a heuristic procedure to schedule timber harvesting based on a trade-off between merchantable wood volume and the remaining amount of habitat and its connectivity during a planning cycle. Our heuristic can attain 84% of the potential woodland caribou habitat that would be available in the absence of harvesting at the end of a 100 year planning horizon. Interestingly, this is more than that which is attained by the current plan (50%) and a harvesting plan that targets high volume stands (32%). Our results indicate that our heuristic procedure (i.e., an ecologically tuned optimization approach) may better direct industrial activities to improve old-growth habitat while maintaining specified timber production levels.