Geomorphic diversity and complexity of the inner shelf, Canadian Arctic Archipelago, based on LiDAR and multibeam sonar surveys

Data from two surveys by multi-beam sonar and two by marine/terrestrial LiDAR are used to evaluate the geomorphology of the seafloor in littoral areas of the Canadian Arctic Channels, near King William Island, Nunavut. Submarine terrains show well-preserved glacial landforms (drumlins, mega-scale gl...

Full description

Bibliographic Details
Published in:Canadian Journal of Earth Sciences
Main Authors: Shaw, John, Potter, D. Patrick, Wu, Yongsheng
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 2020
Subjects:
Online Access:http://dx.doi.org/10.1139/cjes-2018-0312
http://www.nrcresearchpress.com/doi/full-xml/10.1139/cjes-2018-0312
http://www.nrcresearchpress.com/doi/pdf/10.1139/cjes-2018-0312
Description
Summary:Data from two surveys by multi-beam sonar and two by marine/terrestrial LiDAR are used to evaluate the geomorphology of the seafloor in littoral areas of the Canadian Arctic Channels, near King William Island, Nunavut. Submarine terrains show well-preserved glacial landforms (drumlins, mega-scale glacial lineations, iceberg-turbated terrain, recessional moraines, and glaciofluvial landforms) with only slight modification by modern processes (wave action and sea-ice activity). At Gjoa Haven the seafloor is imprinted by fields of pits 2 m wide and 0.15 m deep. They may result from gas hydrate dissolution triggered by falling relative sea levels. The Arctic Archipelago displays what might be termed inverted terrains: marine terrains, chiefly beach ridge complexes, exist above modern sea level and well-preserved glacial terrains are present below modern sea level. This is the inverse of the submerging regimes of Atlantic Canada, where glacial terrains exist on land, but below sea level they have been effaced and modified by marine processes down to the lowstand depth.