Baffin Bay/Nares Strait surface (seafloor) sediment mineralogy: further investigations and methods to elucidate spatial variations in provenance

The goal of the paper is to ascertain whether there are significant regional variations in sediment mineral composition that might be used to elucidate ice sheet histories. The weight percentages of nonclay and clay minerals were determined by quantitative X-ray diffraction. Cluster analysis, an uns...

Full description

Bibliographic Details
Published in:Canadian Journal of Earth Sciences
Main Author: Andrews, John T.
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 2019
Subjects:
Online Access:http://dx.doi.org/10.1139/cjes-2018-0207
http://www.nrcresearchpress.com/doi/full-xml/10.1139/cjes-2018-0207
http://www.nrcresearchpress.com/doi/pdf/10.1139/cjes-2018-0207
Description
Summary:The goal of the paper is to ascertain whether there are significant regional variations in sediment mineral composition that might be used to elucidate ice sheet histories. The weight percentages of nonclay and clay minerals were determined by quantitative X-ray diffraction. Cluster analysis, an unsupervised learning approach, is used to group sediment mineralogy of 263 seafloor/core top samples between ∼80°N and 62°N. The optimum number of clusters, based on 30 indexes, was three for the weight percentage data but varied with data transformations. Maps of the distribution of the three mineral clusters or facies indicate a significant difference in weight percentages between samples from the West Greenland and Baffin Island shelves. However, several indexes support a larger number of clusters and similar analyses of the spatial distribution and defining minerals of nine mineral facies indicated a strong association with the original three clusters and with broad geographic designations (i.e., West Greenland shelf, Baffin Island fiords, etc). Classification Decision Tree analysis indicates that this difference is primarily controlled by the percentages of plagioclase feldspars versus alkali feldspars.