Mineralogy, geochronology, and genesis of the Andrew Lake uranium deposit, Thelon Basin, Nunavut, Canada

The Thelon Basin located in Nunavut, Canada, shares many similarities with the U-producing Athabasca Basin in Saskatchewan. The Kiggavik project area, located near the northeastern edge of the Thelon Basin, contains U deposits and showings along the ∼30 km long NE–SW Kiggavik – Andrew Lake structura...

Full description

Bibliographic Details
Published in:Canadian Journal of Earth Sciences
Main Authors: Shabaga, Brandi M., Fayek, Mostafa, Quirt, David, Jefferson, Charlie W., Camacho, Alfredo
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 2017
Subjects:
Online Access:http://dx.doi.org/10.1139/cjes-2017-0024
http://www.nrcresearchpress.com/doi/full-xml/10.1139/cjes-2017-0024
http://www.nrcresearchpress.com/doi/pdf/10.1139/cjes-2017-0024
Description
Summary:The Thelon Basin located in Nunavut, Canada, shares many similarities with the U-producing Athabasca Basin in Saskatchewan. The Kiggavik project area, located near the northeastern edge of the Thelon Basin, contains U deposits and showings along the ∼30 km long NE–SW Kiggavik – Andrew Lake structural trend. The Andrew Lake deposit is near the southern end of this trend. Pre-mineralization is characterized by quartz ± carbonate veins that occupy fault systems later reactivated as conduits for U-mineralizing fluids. A four-phase genetic model is proposed for the Andrew Lake deposit. Phase 1 comprises vein-style uraninite (U1; 1031 ± 23 Ma) that is associated with illite and hematite, and contains variable PbO contents (0.2–9.5 wt.%). Phase 2 is characterized by altered uraninite (U2; ∼530 Ma) that is associated with coffinite. Altered uraninite (U3; <1 Ma) characterizes phase 3 and occurs as centimetre-scale “roll-fronts”. In phase 4, all three uraninite stages, and coffinite, are altered to boltwoodite. Although the oldest uraninite U–Pb age is ∼1030 Ma, illite associated with the U mineralization gives 40 Ar/ 39 Ar ages of 941 ± 31 and 1330 ± 36 Ma. The younger age is similar to the age for U1, suggesting that there was a fluid event that either precipitated U1 or reset the U–Pb isotopic system at ∼1000 Ma. While the older age for illite (1330 Ma) does not correlate with Andrew Lake U–Pb uraninite ages, it does correlate with ages previously reported for uraninite and clay alteration minerals in the Kiggavik area.