Late-glacial and Holocene evolution as a driver of diversity and complexity of the northeastern North American alpine landscapes: a synthesis

Mid-altitude, mid-latitude mountains are complex environments owing to their Pleistocene glacial heritage, the importance of geomorphic processes on the steep slopes, and the climatic conditions that are often close to periglacial. These factors, along with the fragmentation of the alpine habitats,...

Full description

Bibliographic Details
Published in:Canadian Journal of Earth Sciences
Main Authors: Martin, Jean-Philippe, Germain, Daniel
Other Authors: Trenhaile, Alan
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 2016
Subjects:
Online Access:http://dx.doi.org/10.1139/cjes-2016-0004
http://www.nrcresearchpress.com/doi/full-xml/10.1139/cjes-2016-0004
http://www.nrcresearchpress.com/doi/pdf/10.1139/cjes-2016-0004
Description
Summary:Mid-altitude, mid-latitude mountains are complex environments owing to their Pleistocene glacial heritage, the importance of geomorphic processes on the steep slopes, and the climatic conditions that are often close to periglacial. These factors, along with the fragmentation of the alpine habitats, enhance the topographic and floristic diversity of these environments in northeastern North America. Through case studies, this synthesis underlines the interactions between the geosphere (glacial, paraglacial, and periglacial processes), the atmosphere (climatic fluctuations), and the biosphere (vegetation establishment and evolution to the present day) that explain the low elevation of the northeastern North American alpine environment and that testify to its complexity. Vegetation established earlier in the southern ranges, following the same general trend as the Laurentian Ice Sheet recession. However, local factors such as ice retreat, response to global-scale climate changes, and paraglacial processes acted in synergy to increase the resilience and to influence the occurrence of alpine landscapes. The establishment of the latter environment can therefore be considered to be azonal. Finally, our findings highlight the lack of a conceptual framework, systemic studies, and multi-proxy reconstructions of alpine environments located at the limit of bioclimatic zones controlled by the equilibrium between biostatic and rhexistatic regimes.