Root growth in a polar semidesert environment

Within the northwestern islands of the High Arctic, the vegetation and flora of King Christian Island are very representative. Five plant communities were recognized in a moisture gradient from a moss–rush moist meadow with 22 species of vascular plants and 13% cover (total plant cover 93%) to liche...

Full description

Bibliographic Details
Published in:Canadian Journal of Botany
Main Authors: Bell, Katherine L., Bliss, L. C.
Format: Article in Journal/Newspaper
Language:English
Published: Canadian Science Publishing 1978
Subjects:
Online Access:http://dx.doi.org/10.1139/b78-299
http://www.nrcresearchpress.com/doi/pdf/10.1139/b78-299
Description
Summary:Within the northwestern islands of the High Arctic, the vegetation and flora of King Christian Island are very representative. Five plant communities were recognized in a moisture gradient from a moss–rush moist meadow with 22 species of vascular plants and 13% cover (total plant cover 93%) to lichen barrens on low ridges with 8 species of vascular plants and 3% cover (total plant cover 24%). Root systems of 30 of the 34 known vascular plant species were examined. Root:shoot ratios (alive) are generally 0.2 to 0.7. Roots are estimated to live 1.5 years in Phippsia algida, 3.4–3.7 years in Alopecurus alpinus and Puccinellia vaginata, and 7–13 years in Luzula nivalis, L. confuse), and Cerastium arcticum. Optimal root growth occurs at 12 to 20 °C but cold field soils (1 to 3 °C) reduce these rates by 90%. Root growth was also reduced by low soil water potentials (< − 14 bars (1 bar = 100 kPa)), conditions seldom encountered in these sites. Limited root growth due to cold soils is combined with the adaptive advantages of small roots to produce small plants and sparse cover in these polar semidesert lands.