Evolution Caught in the Act: Evidence from Microfossil Morphology

Microfossils are of prime importance in documenting patterns of evolution due to their great abundance (often tens of thousands to millions of specimens in a hand sample) and widespread distribution (in both time and space) in the fossil record. The term “microfossil” is often used for paleontologic...

Full description

Bibliographic Details
Published in:The Paleontological Society Special Publications
Main Author: Culver, Stephen J.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1999
Subjects:
Online Access:http://dx.doi.org/10.1017/s2475262200014064
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S2475262200014064
Description
Summary:Microfossils are of prime importance in documenting patterns of evolution due to their great abundance (often tens of thousands to millions of specimens in a hand sample) and widespread distribution (in both time and space) in the fossil record. The term “microfossil” is often used for paleontological material that requires a microscope for its study, no matter what its biological affinities. For the purposes of this article we will be looking at the remains of protists (single-celled organisms). The several examples I discuss in this chapter are of three groups of planktonic (floating) protists, the calcareous nannoplankton (tiny plant-like protists whose single cell is covered in minute calcitic scales), the radiolaria (animal-like protists with siliceous shells) and the planktonic foraminifera (animal-like protists with calcitic shells). These organisms have been the subject of extensive study because the material from which they are often extracted, cores of deep-sea sediments, are usually comprised of a more complete sedimentological record ( i.e. , fewer breaks) than shallow shelf deposits. Hypotheses of evolutionary history have been constructed for many groups (lineages) of microfossils using specimens from deep-sea cores. Ancestor-descendent relationships have been recognized by tracking shape and form (morphologic) changes through time. This approach to reconstruction of evolutionary history provides an empirical record of morphologic evolution; that is, a record based on observations.