Using Diatoms as Ecological and Paleoecological Indicators in Riverine Environments

Fossil diatom assemblages are useful for reconstructing past environmental changes in riverine systems. However, few studies have attempted to utilize paleolimnological techniques in these settings. Analysis of sediments from riverine environments can provide key information predating the impact of...

Full description

Bibliographic Details
Published in:The Paleontological Society Papers
Main Author: Stone, Jeffery R.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2007
Subjects:
Online Access:http://dx.doi.org/10.1017/s1089332600001492
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S1089332600001492
Description
Summary:Fossil diatom assemblages are useful for reconstructing past environmental changes in riverine systems. However, few studies have attempted to utilize paleolimnological techniques in these settings. Analysis of sediments from riverine environments can provide key information predating the impact of human development, which cannot be acquired by other means. Paleolimnological techniques can be used to determine the natural variability in these systems and to estimate the magnitude and rates of change that the environment may have undergone as a result of anthropogenic or climatic factors, and to provide realistic goals for management of negatively-impacted systems. Reconstructing past riverine settings requires an understanding of the factors that control the spatial distribution of diatoms in riverine settings; this paper discusses the impact of resources, stressors, and disturbance events, which are the primary controls on the distribution of benthic diatoms in modern riverine environments. A selection of case studies that utilize paleolimnological techniques to infer past stream hydrology are also discussed; these examples encompass the use of fossil diatom assemblages from sediments recovered from lowland floodplain and meandering river systems, estuarine environments, fluvial lakes, arctic deltaic environments, and terminal lakes.