Geochemistry and origin of Mesoproterozoic metavolcanic rocks from Fisher Massif, Prince Charles Mountains, East Antarctica

Fisher Massif consists of Mesoproterozoic ( c. 1300 Ma) lower amphibolite-facies metavolcanic rocks and associated metasediments, intruded by a variety of subvolcanic and plutonic bodies (gabbro to granite). It differs in both composition and metamorphic grade from the rest of the northern Prince Ch...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Authors: Mikhalsky, E. V., Sheraton, J. W., Laiba, A. A., Beliatsky, B. V.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1996
Subjects:
Online Access:http://dx.doi.org/10.1017/s0954102096000120
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102096000120
Description
Summary:Fisher Massif consists of Mesoproterozoic ( c. 1300 Ma) lower amphibolite-facies metavolcanic rocks and associated metasediments, intruded by a variety of subvolcanic and plutonic bodies (gabbro to granite). It differs in both composition and metamorphic grade from the rest of the northern Prince Charles Mountains, which were metamorphosed to granulite facies about 1000 m.y. ago. The metavolcanic rocks consist mainly of basalt, but basaltic andesite, andesite, and more felsic rocks (dacite, rhyodacite, and rhyolite) are also common. Most of the basaltic rocks have compositions similar to low-K island arc tholeiites, but some are relatively Nb-rich and more akin to P-MORB. Intermediate to felsic medium to high-K volcanic rocks, which appear to postdate the basaltic succession, have calc-alkaline affinities and probably include a significant crustal component. On the present data, an active continental margin with associated island arc was the most likely tectonic setting for generation of the Fisher Massif volcanic rocks.