Synoptic forcing of wind and temperature in a large cirque 300 km from the coast of East Antarctica

Between 18 January 1988 and 3 June 1989, an automatic weather station recorded 13 different weather parameters every 3 h on a blue-ice area located in Scharffenbergbotnen, a large cirque in central Heimefrontfjella 300 km from the Weddell Sea coast. The first part of the paper reports on annual and...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Author: Jonsson, Stig
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1995
Subjects:
Online Access:http://dx.doi.org/10.1017/s0954102095000575
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102095000575
Description
Summary:Between 18 January 1988 and 3 June 1989, an automatic weather station recorded 13 different weather parameters every 3 h on a blue-ice area located in Scharffenbergbotnen, a large cirque in central Heimefrontfjella 300 km from the Weddell Sea coast. The first part of the paper reports on annual and monthly data regarding air temperature, air pressure, wind speed and wind direction, and a comparison is also made with corresponding data from the Neumayer and Halley stations. The second part deals mainly with winter (i.e. April–September) conditions in Scharffenbergbotnen. They seem, at least during 1988–89, to have been characterized by a large-scale (30–40 days) and, superimposed on the large-scale, a small-scale (3–4 days) co-variation of air temperature, air pressure and wind speed. The large-scale variation was earlier found to be synoptically forced. This paper shows that synoptic forcing exists also on smaller time scales. Pools of cold, stagnant air are regularly formed in the cirque only to be blown away by katabatic winds triggered by small variations in the synoptic pressure field. When this happens the air temperature increases by more than 20°C and the wind direction swings from east towards south-east. When low pressures dominate in the eastern part of the Weddell Sea, the katabatic winds become very strong, but weaker wind pulses also take place when the synoptic pressure gradient is directed towards the north-east. It therefore seems as if these very regular katabatic events are forced both by synoptic-scale pressure gradients and gradients due to the sloped inversion.