Epilithic macrolichen vegetation of the Argentine Islands, Antarctic Peninsula

Classification of 162 sample plots of lichen vegetation from the Argentine Islands region, Antarctica, yielded two main groups, the Usnea complex and the Mastodia-Rinodina complex, comprising four and six subordinate communities, respectively. Communities of the Usnea complex typically occur in inla...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Authors: Gremmen, N.J.M., Huiskes, A.H.L., Francke, J.W.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1994
Subjects:
Online Access:http://dx.doi.org/10.1017/s0954102094000702
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102094000702
Description
Summary:Classification of 162 sample plots of lichen vegetation from the Argentine Islands region, Antarctica, yielded two main groups, the Usnea complex and the Mastodia-Rinodina complex, comprising four and six subordinate communities, respectively. Communities of the Usnea complex typically occur in inland sites with steep slopes, characterized by low chloride, ammonia and phosphate concentrations. Communities of the Mastodia-Rinodina complex occur close to the shore and in areas occupied by birds, where concentrations of chloride, ammonia and phosphate were relatively high. Within each vegetation complex species composition is related to factors indicating nutrient status (chloride and ammonia concentration, distance from the sea), as well as to variables indicating different microclimatic conditions (elevation, aspect, exposure, moisture, and gradient). In canonical correspondence analyses of the data a large part of species variation could not be explained by the environmental variables studied (elevation, gradient, slope aspect, distance from the sea, direction of the sea, presence of guano, exposure, moisture, chloride, ammonia, phosphate and nitrate concentrations). It is suggested that temporal variability in mineral concentrations and the lack of information on differences in length of the growing season at the sample sites are, to a large extent, responsible for this.