Association of dolerite and lamprophyre dykes, Jetty Peninsula (Prince Charles Mountains, East Antarctica)

A compositionally varied swarm of mafic dykes in the Jetty Peninsula area was emplaced about 320 Ma ago (K-Ar age). There are three major groups: Group 1 dykes range from transitional-alkaline dolerites to camptonites, Group 2 are trachydolerites, and Group 3 are diorite to quartz diorite porphyries...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Authors: Mikhalsky, Eugene V., Sheraton, John W.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1993
Subjects:
Online Access:http://dx.doi.org/10.1017/s0954102093000392
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102093000392
Description
Summary:A compositionally varied swarm of mafic dykes in the Jetty Peninsula area was emplaced about 320 Ma ago (K-Ar age). There are three major groups: Group 1 dykes range from transitional-alkaline dolerites to camptonites, Group 2 are trachydolerites, and Group 3 are diorite to quartz diorite porphyries. Group 1 dykes have very similar ratios of most incompatible elements and were derived from the same (or a very similar) enriched lithospheric mantle source region (∈ Nd −0.18 to −3.05) with high Nb and Ta (i.e., OIB, ocean island basalt, characteristics). However, the presence of several distinct subgroups with different incompatible element abundances implies significantly different degrees of melting. Group 2 trachy dolerites are much more fractionated ( mg 22–36), but were apparently derived from a similar, although somewhat more enriched (∈ Nd −2.26 to −4.63) source. Group 3 diorites are compositionally quite distinct and may have been derived by intracrustal melting. Enrichment of the mantle source(s) of Groups 1 and 2 dykes apparently occurred about the same time as high-grade metamorphism in the area, and may have been coeval with crust formation in nearby parts of Gondwana.