Environmental drivers of benthic communities and habitat heterogeneity on an East Antarctic shelf

Abstract This study presents the first analysis of benthic megafauna and habitats from the Sabrina Coast shelf, encompassing a proposed Marine Protected Area. Sea bed imagery indicated an abundant benthic fauna compared to other parts of the Antarctic shelf, dominated by brittle stars, polychaete tu...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Authors: Post, Alexandra L., Lavoie, Caroline, Domack, Eugene W., Leventer, Amy, Shevenell, Amelia, Fraser, Alexander D.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2016
Subjects:
Online Access:http://dx.doi.org/10.1017/s0954102016000468
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102016000468
Description
Summary:Abstract This study presents the first analysis of benthic megafauna and habitats from the Sabrina Coast shelf, encompassing a proposed Marine Protected Area. Sea bed imagery indicated an abundant benthic fauna compared to other parts of the Antarctic shelf, dominated by brittle stars, polychaete tubeworms, and a range of other sessile and mobile taxa. The distribution of taxa was related (ρ=0.592, P <0.001) to variations in water depth, latitude, substrate type and phytodetritus. High phytodetritus cover was associated with muddy/sandy sediments and abundant holothurians and amphipods, while harder substrates hosted abundant brachiopods, hard bryozoans, polychaete tubeworms, massive and encrusting sponges, and sea whips. Brittle stars, irregular urchins and anemones were ubiquitous. Variations in substrate largely reflected the distribution of dropstones, creating fine-scale habitat heterogeneity. Several taxa were found only on hard substrates, and their broad regional distribution indicated that the density of dropstones was sufficient for most sessile invertebrates to disperse across the region. The hexactinellid sponge Anoxycalyx joubini and branching hydrocorals exhibited a more restricted distribution, probably related to water depth and limited dispersal capability, respectively. Dropstones were associated with significant increases in taxa diversity, abundance and biological cover, enhancing the overall diversity and biomass of this ecosystem.