Biological soil crusts in continental Antarctica: Garwood Valley, southern Victoria Land, and Diamond Hill, Darwin Mountains region

Abstract Biological soil crusts are associations of lichens, mosses, algae, cyanobacteria, microfungi and bacteria in different proportions forming a thin veneer within the top centimetres of soil surfaces. They occur in all biomes, but particularly in arid and semi-arid regions, even in the most ex...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Authors: Colesie, Claudia, Gommeaux, Maxime, Green, T.G. Allan, Büdel, Burkhard
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2013
Subjects:
Online Access:http://dx.doi.org/10.1017/s0954102013000291
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102013000291
Description
Summary:Abstract Biological soil crusts are associations of lichens, mosses, algae, cyanobacteria, microfungi and bacteria in different proportions forming a thin veneer within the top centimetres of soil surfaces. They occur in all biomes, but particularly in arid and semi-arid regions, even in the most extreme climates. They carry out crucial ecosystem functions, such as soil stabilization, influencing water and nutrient cycles, and contribute to the formation of microniches for heterotrophic life. In continental Antarctica especially, these roles are essential because no higher plants provide such ecosystem services. We provide a detailed description of biological soil crusts from Garwood Valley, McMurdo Dry Valleys region (78°S) and Diamond Hill (80°S) in the Darwin Mountains region. The coverage was low at 3.3% and 0.8% of the soil surface. At Garwood Valley the crusts were composed of green algal lichens, cyanobacteria, several species of green algae and the moss Hennediella heimii (Hedw.) R.H. Zander. Diamond Hill crusts appear to be unique in not having any species of cyanobacteria. Major parts are embedded in the soil, and their thickness correlates with higher chlorophyll contents, higher soil organic carbon and nitrogen, which are fundamental components of this species poor cold desert zone.