Raman analysis of blue ice tephra: an approach to tephrachronological dating of ice cores

Abstract Tephra in glacial ice provide a method to obtain a depth vs chronology correlation within an ice core. Currently, core sections containing particulate must be sacrificially analysed to determine the nature of the particulate (e.g. aerosol, micrometeor, volcanic ash), and, in the case of vol...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Author: Barletta, Robert E.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2012
Subjects:
Online Access:http://dx.doi.org/10.1017/s0954102011000885
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102011000885
Description
Summary:Abstract Tephra in glacial ice provide a method to obtain a depth vs chronology correlation within an ice core. Currently, core sections containing particulate must be sacrificially analysed to determine the nature of the particulate (e.g. aerosol, micrometeor, volcanic ash), and, in the case of volcanic ash, the event tied to the particle. Characterization through melting and chemical analysis precludes, de facto , its use for other purposes. A non-destructive technique to characterize particulates in ice cores prior to sectioning the samples, e.g. optical interrogation, would be useful, especially if chemical information specific to particular volcanic eruptions could be gleaned from such an analysis. We investigated the use of micro-Raman spectroscopy for this purpose. Spectra were obtained on samples of Antarctic blue ice tephra from different sources along with a reference ash sample of New Mexico Bandelier Tuff. Vitreous and crystalline particles in the samples were characterized. For vitreous material, a detailed analysis of the Raman-active vibrational bands of the glass structure was found to have the potential of being a unique identifier of the source of the glass, however, additional library development is needed for implementation.