Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica

Abstract Streams in the McMurdo Dry Valleys, Antarctica, flow during the summer melt season (4–12 weeks) when air temperatures are close to the freezing point of water. Because of the low precipitation rates, streams originate from glacial meltwater and flow to closed-basin lakes on the valley floor...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Authors: Welch, Kathleen A., Lyons, W. Berry, Whisner, Carla, Gardner, Christopher B., Gooseff, Michael N., McKnight, Diane M., Priscu, John C.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2010
Subjects:
Online Access:http://dx.doi.org/10.1017/s0954102010000702
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102010000702
Description
Summary:Abstract Streams in the McMurdo Dry Valleys, Antarctica, flow during the summer melt season (4–12 weeks) when air temperatures are close to the freezing point of water. Because of the low precipitation rates, streams originate from glacial meltwater and flow to closed-basin lakes on the valley floor. Water samples have been collected from the streams in the Dry Valleys since the start of the McMurdo Dry Valleys Long-Term Ecological Research project in 1993 and these have been analysed for ions and nutrient chemistry. Controls such as landscape position, morphology of the channels, and biotic and abiotic processes are thought to influence the stream chemistry. Sea-salt derived ions tend to be higher in streams that are closer to the ocean and those streams that drain the Taylor Glacier in western Taylor Valley. Chemical weathering is an important process influencing stream chemistry throughout the Dry Valleys. Nutrient availability is dependent on landscape age and varies with distance from the coast. The streams in Taylor Valley span a wide range in composition and total dissolved solids and are surprisingly similar to a wide range of much larger temperate and tropical river systems.