Influence of temperature and moisture availability on physical rock weathering along the Victoria Land coast, Antarctica

Abstract Rock weathering plays an important role in soil development. A better understanding of how different temperature and moisture regimes impact on the rates of rock breakdown can thus contribute to our knowledge of how rates of soil production might be affected by changes in climate. Laborator...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Author: Elliott, Christine
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2007
Subjects:
Online Access:http://dx.doi.org/10.1017/s0954102007000685
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102007000685
Description
Summary:Abstract Rock weathering plays an important role in soil development. A better understanding of how different temperature and moisture regimes impact on the rates of rock breakdown can thus contribute to our knowledge of how rates of soil production might be affected by changes in climate. Laboratory simulations using two temperature cycles determined from field data and three moisture levels were carried out on samples of granite from three locations along the Victoria Land coast. Estimates of weathering rate from these experiments were of the same order of magnitude as some other more field based studies undertaken in similar environments. However, actual values for samples from the three locations varied depending on the specific characteristics of the rock, especially grain size, porosity and extent of micro-cracking. Moisture availability was found to be an important factor in determining weight loss in the samples from Gneiss Point but not in those from Terra Nova Bay or Teall Island with the moderate level of moisture application having the greatest impact. Spring/autumn temperature cycles had a different effect on the breakdown of the rock samples compared to summer cycles but the magnitude of the effect was dependent on moisture level and rock characteristics, especially quartz content and the ability to absorb heat and moisture. The samples of rock from Terra Nova Bay and Gneiss Point where no moisture had been applied had significantly higher rates of breakdown under spring/autumn cycles than summer ones. However, this effect was reversed in the Gneiss Point samples after moisture was added. A future climate scenario using the weathering rates found in this research where there was, for example, a 10% increase in summer temperature cycles and a corresponding decrease in spring/autumn cycles predicted that a reduction in weathering would occur in conditions of little or no precipitation at Terra Nova Bay and Gneiss Point but there would be limited effect under higher levels of moisture.