Sediment characteristics at selected sites of the Ross Sea continental shelf: does the sedimentary record reflect water column fluxes?

Flux data from moored sediment trap experiments and mass accumulation rates in sediments were obtained for three sites in the Ross Sea which are currently studied for the formation and transit of High Salinity Shelf Water and Ice Shelf Water. These two data sets were compared to obtain inferences on...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Authors: FRIGNANI, M., GIGLIO, F., ACCORNERO, A., LANGONE, L., RAVAIOLI, M.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2003
Subjects:
Online Access:http://dx.doi.org/10.1017/s0954102003001123
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0954102003001123
Description
Summary:Flux data from moored sediment trap experiments and mass accumulation rates in sediments were obtained for three sites in the Ross Sea which are currently studied for the formation and transit of High Salinity Shelf Water and Ice Shelf Water. These two data sets were compared to obtain inferences on the coupling between water column processes and sedimentary records. The depth distribution of physical features and concentrations of organic carbon and biogenic silica in box cores and gravity cores were studied. Mass accumulation rates, established on the basis of two conventional 14 C dates for each core, range between 7.64 and 19.46 g m −2 yr −1 . Although these are productive areas, downward fluxes measured by sediment traps are low: 7.5–25.6, 2.4–17.9 and 0.5–0.9 g m −2 yr −1 for particles, biogenic silica and organic carbon, respectively. The concentrations of biogenic components in surficial sediments are correspondingly low. Simple mass balances were calculated assuming the conservative behaviour of the lithic fraction of sinking materials and sediment. Lateral advection of suspended particles is needed to balance the fluxes at the three sites. Furthermore, the model suggests that the preservation of biogenic components is lower than at other sites of the Ross Sea, probably due to the low accumulation rates that imply a high residence time of biogenic materials at the sediment-water interface.