Carrier Phase GPS Navigation to the North Pole

Over the last few years, on-the-fly integer ambiguity resolution for GPS has proven to be successful over short baselines (<20 km). However, the remaining challenge has been to extend the length of the baseline between the reference station and the mobile receiver, whilst still maintaining the ca...

Full description

Bibliographic Details
Published in:Journal of Navigation
Main Authors: Moore, T., Roberts, G. W.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1999
Subjects:
Online Access:http://dx.doi.org/10.1017/s037346339800808x
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S037346339800808X
Description
Summary:Over the last few years, on-the-fly integer ambiguity resolution for GPS has proven to be successful over short baselines (<20 km). However, the remaining challenge has been to extend the length of the baseline between the reference station and the mobile receiver, whilst still maintaining the capability of on-the-fly resolution and true carrier-based kinematic positioning. The goal has been to achieve centimetric level positioning at ranges of over 500 km. New techniques have been developed at the University of Nottingham to allow very long baseline integer ambiguity resolution, on-the-fly. A major problem with the use of carrier phase data is that posed by cycle slips. A technique for detecting and correcting cycle slips has been developed, and its use is discussed in this paper. The new technique has been proven through a series of trials, one of which included two flights to the North Pole, performing centimetric level positioning all the way to the pole. For many years, the GD Aero-Systems Course of the Air Warfare Centre based at RAF Cranwell executed a series of equipment flight trials to the North Pole, called the ARIES Flights. In May 1996, the authors were fortunate to take part in both flights, via Iceland and Greenland, to the North Pole. Based on reference stations at Thule Air Base, integer ambiguity resolution was accomplished, on-the-fly, and centimetric level navigation maintained throughout the flights. Earlier trials detailed in the paper demonstrate that the technique can resolve integer ambiguities on-the-fly within a few seconds over a baseline length of approximately 134 km, resulting in an accuracy of 12 cm. The majority of the residual error source for this being the ionosphere.