A Microscopic Approach to Investigate Bacteria under In-Situ Conditions in Arctic Lake Ice: Initial Comparisons to Sea Ice

To better understand constraints on bacteria at extremely low temperatures in ice, we describe here the adaptation of methods previously developed for sea ice to high magnification imaging of bacteria within fluid inclusions of Arctic lake ice under insitu conditions. Bacterial staining procedures,...

Full description

Bibliographic Details
Published in:Symposium - International Astronomical Union
Main Authors: Junge, Karen, Deming, Jody W., Eicken, Hajo
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2004
Subjects:
Online Access:http://dx.doi.org/10.1017/s0074180900193581
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0074180900193581
Description
Summary:To better understand constraints on bacteria at extremely low temperatures in ice, we describe here the adaptation of methods previously developed for sea ice to high magnification imaging of bacteria within fluid inclusions of Arctic lake ice under insitu conditions. Bacterial staining procedures, using the DNA-specific fluorescent stain DAPI, epifluorescence microscopy and image analysis were applied to lake-ice sections at in situ temperature (-5°C). Abundances of total, attached, free-living and metabolically active lake-ice bacteria were also determined from samples melted at 0°C using the fluorescent stains DAPI and CTC. Initial results indicate that, compared to sea ice at the same in situ temperature, lake ice contains fewer and more isolated liquid inclusions, limiting transport of fluids and motion of bacteria. Metabolically active cells were found in all ice samples (0.1 to 2.0% of the total counts), but on average less than in sea ice. Up to 50% of the total bacterial community were found to be associated with particles > 3 μm in size; of the metabolically active cells, a smaller fraction may be attached than in sea ice. Our results expand the spectrum of information available on bacteria in ice on a scale relevant to the organism and provide insight into characteristics of frozen microbial habitats on Earth and perhaps elsewhere in the Universe.