Evaluation of AIS reception in Arctic regions from space by using a stratospheric balloon flight

ABSTRACT Due to the increased melting season in the arctic regions, especially in the seas surrounding Greenland, there has been an increased interest in utilising these waterways, both as an efficient transport route and an attractive leisure destination. However, with heavier traffic comes an incr...

Full description

Bibliographic Details
Published in:Polar Record
Main Authors: Larsen, Jesper Abildgaard, Nielsen, Jens Dalsgaard, Mortensen, Hans Peter, Rasmussen, Ulrik Wilken, Laursen, Troels, Ledet-Pedersen, Jeppe
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2011
Subjects:
Online Access:http://dx.doi.org/10.1017/s0032247411000374
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0032247411000374
Description
Summary:ABSTRACT Due to the increased melting season in the arctic regions, especially in the seas surrounding Greenland, there has been an increased interest in utilising these waterways, both as an efficient transport route and an attractive leisure destination. However, with heavier traffic comes an increased risk of accidents. Due to the immense size and poor infrastructure of Greenland, it is not feasible to deploy ground based ship monitoring stations throughout the Greenland coastline. Thus the only feasible solution is to perform such surveillance from space. In this paper it is shown how it is possible to receive transmissions from the Automatic Identification System (AIS) from space and the quality of the received AIS signal is analysed. To validate the proposed theory, a field study, utilising a prototype of AAUSAT3, the third satellite from Aalborg University, was performed using a stratospheric balloon flight in the northern part of Sweden and Finland during the autumn of 2009. The analysis finds that, assuming a similar ship distribution as in the Barents Sea, it is feasible to monitor the ship traffic around Greenland from space with a satisfactory result.