The influence of soil microstructure on hydraulic properties of hydrocarbon-contaminated freezing ground

Abstract The significance of the thermodynamic relations of ice and water within the paniculate and porous soil medium has been widely demonstrated in recent decades. The existence of unfrozen water along with ice at temperatures below 0°C, because of capillary and mineral surface forces, is respons...

Full description

Bibliographic Details
Published in:Polar Record
Main Authors: White, T.L., Williams, P.J.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1999
Subjects:
Online Access:http://dx.doi.org/10.1017/s0032247400026309
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0032247400026309
Description
Summary:Abstract The significance of the thermodynamic relations of ice and water within the paniculate and porous soil medium has been widely demonstrated in recent decades. The existence of unfrozen water along with ice at temperatures below 0°C, because of capillary and mineral surface forces, is responsible for the specific thermal, mechanical, and hydraulic properties of soils exposed to seasonal or perennial freezing. The introduction of a hydrocarbon contaminant into this dynamic porous medium has significant consequences for the thermodynamics of the unfrozen water–ice interactions. Techniques recently developed have allowed examination of microstructures of soils exposed to freezing. It has been shown that freeze–thaw cycles produce complex changes in particle aggregation and pore space distribution, which in turn affect soil water energy. An examination of the microstructure of a hydrocarbon-contaminated, frostaffected soil revealed differences in morphology from that of similar but uncontaminated samples. These differences are in turn responsible for differences in hydraulic conductivity between uncontaminated and contaminated freezing soils.