Increased susceptibility of salmonids to the monogenean Gyrodactylus salaris following administration of hydrocortisone acetate

Gyrodactylus salaris infects numerous salmonid species, ranging from the fully susceptible (Norwegian strains of Salmo salar ), through species which, though initially susceptible, eventually eliminate their infections ( Salvelinus alpinus and S. fontinalis ) to entirely resistant ( Salmo trutta ) s...

Full description

Bibliographic Details
Published in:Parasitology
Main Authors: HARRIS, P. D., SOLENG, A., BAKKE, T. A.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2000
Subjects:
Online Access:http://dx.doi.org/10.1017/s0031182099005223
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0031182099005223
Description
Summary:Gyrodactylus salaris infects numerous salmonid species, ranging from the fully susceptible (Norwegian strains of Salmo salar ), through species which, though initially susceptible, eventually eliminate their infections ( Salvelinus alpinus and S. fontinalis ) to entirely resistant ( Salmo trutta ) species. Here we describe experiments in which Salvelinus alpinus , S. fontinalis and Salmo trutta , implanted with hydrocortisone acetate to simulate stress-induced immunosuppression, were challenged with G. salaris . With previously uninfected Salvelinus fontinalis , G. salaris infections on fish treated with hydrocortisone acetate grew larger, and for longer, than on sham-treated controls. A similar result was obtained with S. trutta . Patterns of infection on Arctic charr, Salvelinus alpinus , were more complex, because individual fish varied from susceptible to highly resistant. Fish were therefore initially infected with G. salaris , and the most highly resistant group of individuals identified and disinfected. After 6 months recovery from this primary infection, hydrocortisone acetate was administered to half the fish, and all were challenged with G. salaris . Parasite populations on the hydrocortisone-treated individuals were consistently larger than those on the sham-treated controls, exceeding 30 parasites per fish after 5 weeks, in comparison with less than 10 parasites per fish on controls. These results indicate that hydrocortisone administration can lead to enhanced gyrodactylid populations on a range of salmonids. This suggests that the response to G. salaris is mediated by the immune system, and that the spectrum of responses observed in different species are, at least in part, due to the same mechanism. At a practical level, stress-induced immunosuppression during handling and transport of cultured salmonids may prove an important factor in the dissemination of G. salaris between watersheds.