Use of maternal reserves as a lactation strategy in large mammals

The substrate demands of lactation must be met by increased dietary intake or by mobilization of nutrients from tissues. The capacity of animals to rely on stored nutrients depends to a large extent on body size; large animals have greater stores, relative to the demands of lactation, than do small...

Full description

Bibliographic Details
Published in:Proceedings of the Nutrition Society
Main Author: Oftedal, Olav T.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2000
Subjects:
Online Access:http://dx.doi.org/10.1017/s0029665100000124
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0029665100000124
Description
Summary:The substrate demands of lactation must be met by increased dietary intake or by mobilization of nutrients from tissues. The capacity of animals to rely on stored nutrients depends to a large extent on body size; large animals have greater stores, relative to the demands of lactation, than do small animals. The substrate demands of lactation depend on the composition and amount of milk produced. Animals that fast or feed little during lactation are expected to produce milks low in sugar but high in fat, in order to minimize needs for gluconeogenesis while sustaining energy transfers to the young. The patterns of nutrient transfer are reviewed for four taxonomic groups that fast during part of or throughout lactation: sea lions and fur seals (Carnivora: Otariidae), bears (Carnivora: Ursidae), true seals (Carnivora: Phocidae) and baleen whales (Cetacea: Mysticeti). All these groups produce low-sugar high-fat milks, although the length of lactation, rate of milk production and growth of the young are variable. Milk protein concentrations also tend to be low, if considered in relation to milk energy content. Maternal reserves are heavily exploited for milk production in these taxa. The amounts of lipid transferred to the young represent about one-fifth to one-third of maternal lipid stores; the relative amount of the gross energy of the body transferred in the milk is similar. Some seals and bears also transfer up to 16–18 % of the maternal body protein via milk. Reliance on maternal reserves has allowed some large mammals to give birth and lactate at sites and times far removed from food resources.