A review of the biology of European cockles ( Cerastodermaspp.)

This review examines the biology of the two main cockle species Cerastoderma edule and C. glaucum found in coastal areas around the north-east Atlantic from Norway to Morocco and through the Baltic, Mediterranean and Black Sea. It considers those factors in particular that impact on the overall heal...

Full description

Bibliographic Details
Published in:Journal of the Marine Biological Association of the United Kingdom
Main Authors: Malham, Shelagh K., Hutchinson, Thomas H., Longshaw, Matt
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2012
Subjects:
Online Access:http://dx.doi.org/10.1017/s0025315412000355
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0025315412000355
Description
Summary:This review examines the biology of the two main cockle species Cerastoderma edule and C. glaucum found in coastal areas around the north-east Atlantic from Norway to Morocco and through the Baltic, Mediterranean and Black Sea. It considers those factors in particular that impact on the overall health and survival of individuals as well as populations. Methods for the discrimination of the species are reviewed as well as the approaches being taken to delineate different populations, which is crucial to appropriately manage individual fisheries. Cockle populations generally undergo sexual maturation during their second summer and sexes are separate. Eggs are pelagic, with larvae being both benthic and pelagic before settling on the sediment and becoming benthic adults. However, data are lacking on basic larval biology and dispersal mechanisms. Data are provided on predator–prey relationships including information on types of food of importance to cockles. Main predators of cockles include brown shrimp, shore crabs, gastropods, polychaetes, fish and a variety of birds and these can be important in structuring cockle populations. Predation of larval cockles by adult cockles through larviphagy can lead to reductions of up to 40% of the population. Cockles are sensitive to a wide range of chemical contaminants but few data are published on impacts on cockles, in particular larval stages. The review concludes with an assessment of future climate change scenarios on cockles and considers some areas of future research required to preserve this ecologically and economically important species.