Lecithaster (Lecithasteridae, Digenea) in the White Sea: an unnoticed guest from the Pacific?

Abstract Morphological discrimination of species is problematic in many digenean taxa. Parasites of marine fish from the genus Lecithaster Lühe, 1901 are a good example of this. Our goal was to understand which species of Lecithaster infect fish in the White Sea, and reveal their life cycles. We col...

Full description

Bibliographic Details
Published in:Journal of Helminthology
Main Authors: Krupenko, D., Kremnev, G., Skobkina, O., Gonchar, A., Uryadova, A., Miroliubov, A.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2022
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022149x22000281
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022149X22000281
Description
Summary:Abstract Morphological discrimination of species is problematic in many digenean taxa. Parasites of marine fish from the genus Lecithaster Lühe, 1901 are a good example of this. Our goal was to understand which species of Lecithaster infect fish in the White Sea, and reveal their life cycles. We collected specimens of maritae from nine fish species, analysed their morphology and sequenced 28S ribosomal DNA and internal transcribed spacer 2 (ITS2). Contrary to previous accounts, all of them belong to a single species, Lecithaster salmonis Yamaguti, 1934, which was previously only recorded from the Pacific. Morphologically, our maritae specimens were highly variable, sharing characters of L. salmonis , Lecithaster confusus Odhner, 1905 and Lecithaster gibbosus (Rudolphi, 1802) Lühe, 1901. This variability did not correlate with the moderate differences in ITS2 among the specimens, and neither did the fish host species. Members of the subfamily Salmoninae appear to be the best suited definitive hosts, judging from the intensity rates. The intermediate hosts were also discovered: the first is Cryptonatica affinis (Gmelin, 1791) and the second are planktonic copepods. These lifecycle data from the White Sea are consistent with L. salmonis species identification and with the distribution of this species in the North Pacific. The geographical range of L. salmonis seems to be interrupted, and we discuss possible ways of L. salmonis expansion.