Theory of lattice Boltzmann simulations of glacier flow

Abstract A lattice Boltzmann technique for modeling Navier–Stokes fluid flow is extended to allow steady-state simulations of glaciers and other slow-flowing solids. The technique is based on a statistical mechanical representation of flowing ice as a set of particles (populations) which translate a...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Bahr, David B., Rundle, John B.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1995
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000034948
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000034948
Description
Summary:Abstract A lattice Boltzmann technique for modeling Navier–Stokes fluid flow is extended to allow steady-state simulations of glaciers and other slow-flowing solids. The technique is based on a statistical mechanical representation of flowing ice as a set of particles (populations) which translate and collide on a face-centered cubic lattice. The average trajectories of the populations give the velocities of the ice at any point in the glacier. The method has considerable advantages over other techniques, including its ability to handle complex realistic geometries without additional complications to the code Examples are presented for two-dimensional simulations.