Measuring geophysical parameters of the Greenland ice sheet using airborne radar altimetry

Abstract This paper presents radar-altimeter scattering models for each of the diagenetic zones of the Greenland ice sheet. AAFE radar-altimeter waveforms obtained during the 1991 and 1993 NASA multi-sensor airborne altimetry experiments over Greenland reveal that the Ku-band return pulse changes si...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Ferraro, Ellen J., Swift, Calvin T.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1995
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000034924
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000034924
Description
Summary:Abstract This paper presents radar-altimeter scattering models for each of the diagenetic zones of the Greenland ice sheet. AAFE radar-altimeter waveforms obtained during the 1991 and 1993 NASA multi-sensor airborne altimetry experiments over Greenland reveal that the Ku-band return pulse changes significantly with the different diagenetic zones. These changes are due to varying amounts of surface and volume scattering in the return waveform. In the ablation and soaked zones, where surface scattering dominates the AAFE return, geophysical parameters such as rms surface height and rms surface slope are obtained by fitting the waveforms to a surface-scattering model. Waveforms from the percolation zone show that sub-sruface ice features have a much more significant effect on the return pulse than the surrounding snowpack. Model percolation waveforms, created using a combined surface- and volume-scattering model and an ice-feature distribution obtained during the 1993 field season, agree well with actual AAFE waveforms taken in the same time period. Using a combined surface- and volume-scattering model for the dry-snow-zone return waveforms, the rms surface height and slope and the attenuation coefficient of the snowpack are obtained. These scattering models not only allow geophysical parameters of the ice sheet to he measured but also help in the understanding of satellite radar-altimeter data.