Vacancies in Pure Ice Studied by Positron Annihilation Techniques

Abstract Positron annihilation techniques (PAT) are briefly discussed, and the information that may be obtained about the positronium (Ps) states is compared to that obtainable about the similar electron states. The behaviour of Ps in monocrystals of pure light and heavy ice was studied at temperatu...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Mogensen, O. E., Eldrup, M.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1978
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000033335
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000033335
Description
Summary:Abstract Positron annihilation techniques (PAT) are briefly discussed, and the information that may be obtained about the positronium (Ps) states is compared to that obtainable about the similar electron states. The behaviour of Ps in monocrystals of pure light and heavy ice was studied at temperatures between — 185 ° C and the melting point. Ps is very probably trapped in vacancies (i.e. missing water molecules) in ice. A vacancy formation energy of roughly 0.2–0.35 eV was derived in agreement with the value 0.28±0.07 eV obtained previously from studies of the annealing of irradiated ice. The vacancy concentration is at least a few parts per million at the melting point, i.e. roughly 10 4 times higher than normally assumed in the literature. The fact that the vacancy concentration is comparable to that of the hydrogen-bond defects will probably enforce a pronounced change in the “hydrogen-bond-defects” theory of the electric properties of ice.