Basal Sliding and Bed Separation: Is There a Connection?

Abstract Analysis of field data from Variegated Glacier supports the conclusion of Meier (1968) that no simple relationship between basal shear stress and sliding velocity can be found. On the other hand, an index of bed separation is defined and evaluated that correlates very well with the longitud...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Author: Bindschadler, Robert
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1979
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000030045
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000030045
Description
Summary:Abstract Analysis of field data from Variegated Glacier supports the conclusion of Meier (1968) that no simple relationship between basal shear stress and sliding velocity can be found. On the other hand, an index of bed separation is defined and evaluated that correlates very well with the longitudinal variation of summer sliding velocity inferred for Variegated Glacier. This bed separation parameter is defined as where τ is the basal shear stress and is proportional to the drop in normal stress on the down-glacier side of bedrock bumps and N eff is the effective normal stress equal to the overburden stress minus the subglacial water pressure. The water-pressure distribution is calculated assuming water flow to be confined in subglacial Röthlisberger conduits. The excellent agreement between the longitudinal profiles of I and sliding velocity suggests that calculations of the variation of bed separation can be used to deduce the variation of sliding velocity in both space and time. Further, it is possible that a functional relationship can be developed that adequately represents the geometric controls on basal sliding to permit accurate predictions of sliding velocities.