Simulation of Ice Flow using the Finite-Element Method

Abstract A plane-strain, incremental, initial-strain finite-element analysis, incorporating creep laws appropriate for the ranges of stresses and temperature involved, is used to simulate typical ice-slope flow problems. The flow of a uniform ice slope, assuming the mass is intact and no basal slidi...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Nguyen, T.Q., Emery, J.J.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1977
Subjects:
Online Access:http://dx.doi.org/10.1017/s002214300002966x
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S002214300002966X
Description
Summary:Abstract A plane-strain, incremental, initial-strain finite-element analysis, incorporating creep laws appropriate for the ranges of stresses and temperature involved, is used to simulate typical ice-slope flow problems. The flow of a uniform ice slope, assuming the mass is intact and no basal sliding occurs, shows that differences in steady-state velocities can be by orders of magnitude for various creep laws. A non-uniform ice slope and a uniform slope behind a concrete wall are also considered. Time-independent developments of tensile crack and basal shear are investigated by introducing joint elements with appropriate stiffness properties at iceĢ¶rock interfaces and tension zones. Then, the simulation model is modified to account for both time-dependent basal sliding (surging) and tensile crack development. In one case, basal shear failure is considered imminent if the shear strain in a thin basal ice layer, that allows wide variation in sliding velocity, exceeds a critical value. For the other case, the basal ice layer is replaced by joint elements and the progressive shear-stress failure mechanism during flow is demonstrated.