Effects of a Debris Slide on “Sioux Glacier”, South-Central Alaska

Abstract The lower one-third of “Sioux Glacier” in south-central Alaska was buried beneath a debris slide during the 27 March 1964 earthquake. Investigations to determine the effect of this cover on the regimen of the glacier revealed that it has increased in thickness by as much as 28 m, primarily...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Author: Reid, John R.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1969
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000026940
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000026940
Description
Summary:Abstract The lower one-third of “Sioux Glacier” in south-central Alaska was buried beneath a debris slide during the 27 March 1964 earthquake. Investigations to determine the effect of this cover on the regimen of the glacier revealed that it has increased in thickness by as much as 28 m, primarily as a result of the insulating effect of this debris cover. In areas where debris has continuously veneered the surface, at least since 1938, the ice is also thicker. A longitudinal profile reveals that the area near the upper extent of the slide debris has become intensely crevassed and has been lowered as much as 8 m between 1965 and 1966, while the terminal area is up to 5 m higher and is characterized by thrusting. It is concluded that a kinematic wave passed through this glacier sometime between 1965 and 1966. The upper zone of debris-veneered ice is moving at 175 m/year while the terminal area is flowing at only 21 m/year. The rate of down-glacier decrease in velocity is about 0.06 m/year per meter of horizontal distance except for an area approximately 1 km from the terminus. Here, the rate of decrease in velocity is 0.1 m/year per meter. The change in rate is presumed to be related to topographic control caused by the recent thinning of the ice here.