Crystal Orientation in Glacier and in Experimentally Deformed Ice

Abstract More than 8,000 ice crystals have been oriented and measured for crystal fabric studies from widely separated temperate and polar glaciers, using a large universal stage and thin-section techniques. Very strong fabrics have been found and a number of laboratory experiments on deformation an...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Author: Rigsby, George P.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1960
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000023716
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000023716
Description
Summary:Abstract More than 8,000 ice crystals have been oriented and measured for crystal fabric studies from widely separated temperate and polar glaciers, using a large universal stage and thin-section techniques. Very strong fabrics have been found and a number of laboratory experiments on deformation and recrystallization of ice were conducted in an attempt to solve some of the perplexing problems raised concerning glacier flow. In polar glaciers the c or optic axes of the ice crystals tend to be perpendicular to the foliation plane (alternating planar structures of bubbly and clear ice). In areas of high shearing stress the preferred orientation of the axes reached 39 per cent in 1 per cent of the area when plotted on a Schmidt equal-area projection. In temperate glaciers the optic axes tend to form three or four strong maxima which also appear related to the foliation. Patterns from ice deformed in the laboratory resemble some of the fabric patterns found in polar glaciers. During deformation of laboratory specimens, large crystals have been observed recrystallizing into many smaller ones, while fine-grained ice, after completion of deformation (both glacier ice and laboratory deformed ice), has been annealed at melting temperature into a few large crystals with different orientations from the original pattern.