Creep of Ice Containing Dispersed Fine Sand

Abstract Cylindrical samples of ice with 0.0 to 0.35 volume fraction fine sand were tested in unconfined uniaxial compression at stresses between 5.3 and 6.4 bar and at temperatures between −7.4 and −9.4° C. Secondary creep rates were obtained from the slope of the total strain vs. time curve and we...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Hooke, Roger LeB., Dahlin, Brian B., Kauper, Michael T.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1972
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000022309
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000022309
Description
Summary:Abstract Cylindrical samples of ice with 0.0 to 0.35 volume fraction fine sand were tested in unconfined uniaxial compression at stresses between 5.3 and 6.4 bar and at temperatures between −7.4 and −9.4° C. Secondary creep rates were obtained from the slope of the total strain vs. time curve and were normalized to 5.6 bar and −9.1° C. Creep rates in ice with low sand concentrations were in some cases higher and in other cases lower than in clean ice. However at higher sand concentrations the creep rate decreases exponentially with increasing volume fraction sand. The latter results are in general agreement with theories developed to explain dispersion hardening of metals, and suggest that each sand grain is surrounded by a tangled network of secondary dislocations which impede passage of primary glide dislocations.