Periodic Surge Origin of Folded Medial Moraines on Bering Piedmont Glacier, Alaska

Abstract The vast Bering piedmont glacier, which has large folds in the medial moraines in its terminal lobe, recently experienced two surges with a combined ice displacement of as much as 13 km. Vertical aerial photographs taken before and after the surges disclose the direction and magnitude of ic...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Author: Post, Austin
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1972
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000022218
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000022218
Description
Summary:Abstract The vast Bering piedmont glacier, which has large folds in the medial moraines in its terminal lobe, recently experienced two surges with a combined ice displacement of as much as 13 km. Vertical aerial photographs taken before and after the surges disclose the direction and magnitude of ice flow in various parts of the piedmont lobe. The ice moved toward the terminus and expanded in a normal, radial pattern with no evidence of unusual shearing that would result in the formation of large folds. Many surging glaciers display repeated lateral displacements in their medial moraines which result from periodic surging of the main glacier past non-surging tributaries. Moraines of Bering Glacier display small periodic irregularities of this nature. The large “accordion” folds in the moraines in the piedmont lobe are judged to be due to the combined effects of compressive flow and lateral or transverse expansion of these previously formed irregularities. The initially small pre-existing perturbations in the moraines are simply spread laterally and shortened radially into large folds as the ice spreads out. A very large debris band composed of repeatedly folded medial moraines extends across the center of the Bering Glacier lobe. These remarkable folds are thought to result from the deformation of surge-related irregularities in medial moraines as they pass through the zone of intensive shear near the glacier’s margin.