Dating of Greenland Ice Cores by Flow Models, Isotopes, Volcanic Debris, and Continental Dust

Abstract The available methods for dating of ice cores are based on radioactive decay, ice-flow calculations, or stratigraphic observations. The two former categories are broadly outlined, and special emphasis is given to stratigraphic methods. Reference horizons are established back to A.D. 1783, i...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Hammer, C.U., Clausen, H. B., Dansgaard, W., Gundestrup, N., Johnsen, S. J., Reeh, N.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1978
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000021183
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000021183
Description
Summary:Abstract The available methods for dating of ice cores are based on radioactive decay, ice-flow calculations, or stratigraphic observations. The two former categories are broadly outlined, and special emphasis is given to stratigraphic methods. Reference horizons are established back to A.D. 1783, in the form of elevated electrical conductivities due to fallout of soluble volcanic debris. Seasonal variations in the concentrations of insoluble microparticles and/or stable isotopes are measured over the entire 400 m lengths of three ice cores, recovered by Greenland Ice Sheet Program (GISP). The resulting absolute time scales are probably accurate within a few years per thousand. Techniques are outlined for re-establishing the approximate, original shape of heavy-isotope profiles that have been more or less smoothed by diffusion in firn and ice. Annual-layer thickness measurements on 24 increments down to 1130 m depth in the Camp Century ice core determine a flow pattern, consistent with that suggested by Dansgaard and Johnsen (1969), and a Camp Century time scale with an estimated uncertainty better than 3% back to 10000 years B.P.