Plane-Strain Compressive Strength of Columnar-Grained and Granular-Snow Ice

Abstract An ice cover impinging on a long straight structure is assumed to be under a condition of plane strain. A technique is described for performing plane-strain compression tests, and results are presented for the strain-rate dependence of strength. The plane-strain compressive strength of ice...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Author: Frederking, R.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1977
Subjects:
Online Access:http://dx.doi.org/10.1017/s002214300002116x
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S002214300002116X
Description
Summary:Abstract An ice cover impinging on a long straight structure is assumed to be under a condition of plane strain. A technique is described for performing plane-strain compression tests, and results are presented for the strain-rate dependence of strength. The plane-strain compressive strength of ice having anisotropic structure (columnar-grained ice) is at least two and a half times the uniaxial compressive strength, whereas the plane-strain compressive strength of ice having an isotropic structure (granular-snow ice) is at most 25% greater than the uniaxial case. The greater plane-strain compressive strength of columnar grained ice when the loading and confining directions are in the plane of the ice cover, can be attributed to its anisotropic structure, which leads to a different failure mechanism for the plane-strain case.