Ice Lensing, Thermal Diffusion and Water Migration in Freezing Soil

When a surface layer of the soil freezes, both heat and water diffuse from the unfrozen soil beneath to the frozen region. Often the soil does not freeze homogeneously but distinct ice lenses form. An analysis of the diffusion and ice nucleation processes suggests conditions under which ice lensing...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Author: C. Palmer, Andrew
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1967
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000019948
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000019948
Description
Summary:When a surface layer of the soil freezes, both heat and water diffuse from the unfrozen soil beneath to the frozen region. Often the soil does not freeze homogeneously but distinct ice lenses form. An analysis of the diffusion and ice nucleation processes suggests conditions under which ice lensing can be expected; in particular, it is shown that multiple ice lenses cannot form unless the soil thermal diffusivity is greater than the water diffusion coefficient. Analysis of a simple one-dimensional case (a semi-infinite mass of homogeneous soil whose surface temperature is suddenly lowered) gives the temperature and water-content fields as functions of time; these agree with those observed in an experimental study of freezing clay.