Wind Speed, Stability and Eddy Viscosity over Melting Ice Surfaces

Abstract The laws of wind-speed variation with height and their modification with stability are discussed and applied to observations in the first 2 m. over various cold surfaces. An exponential law is superior save in frequent, near-neutral conditions, but the logarithmic law is superior in neutral...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Grainger, M. E., Lister, H.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1966
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000019109
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000019109
Description
Summary:Abstract The laws of wind-speed variation with height and their modification with stability are discussed and applied to observations in the first 2 m. over various cold surfaces. An exponential law is superior save in frequent, near-neutral conditions, but the logarithmic law is superior in neutral and again in really stable conditions. A power law and a logarithmic-plus-linear law give the best fit with the data only at moderate stabilities. A logarithmic-plus-cubic law of wind speed is evolved that permits suppression of linear additions to the logarithmic law at two distinct stabilities. A power form of variation of Richardson number with height is found and compared with a linear form. The former is applied with the logarithmicplus-cubic law to the observed data, though with limited success. Eddy-viscosity coefficients for the different laws are compared.