Characterization and flexural strength of iceberg and glacier ice

Abstract Flexural strength of iceberg and glacier ice was determined from Four-point beam-bending experiments. A large quantity of glacial ice was collected from four icebergs and one glacier, and a detailed ice-characterization program was performed on samples from the five sources. Beam-bending ex...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Gagnon, R.E., Gammon, P.H.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1995
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000017809
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000017809
Description
Summary:Abstract Flexural strength of iceberg and glacier ice was determined from Four-point beam-bending experiments. A large quantity of glacial ice was collected from four icebergs and one glacier, and a detailed ice-characterization program was performed on samples from the five sources. Beam-bending experiments were conducted at four temperatures in the range −1 ° to-16 °C and at strain rates of 10 −3 and 10 −5 s −1 . The flexural strength was found to increase with increasing strain rate (based on extreme fibre strain and decreasing temperature. The data suggest than air-bubble inclusions play an important role in determining the flexural strength of glacial ice and this can explain the significant differences in mean strength of the ice from the five sources. At a strain rate of 10 −3 s −1 and temperature of —11 °C, the flexural strength was found to increase as the number of bubbles per unit volume increased. Reduction of crack-initiating stresses at grain boundaries by “softening” of grains due to intragranular air-bubble inclusions is thought to be the mechanism.