Timing of stagnation of Ice Stream C, West Antarctica, from short-pulse radar studies of buried surface crevasses

Abstract Five short-pulse radar profiles were run across the edge of inactive Ice Stream C, one of the “Ross” ice streams that flows from the West Antarctic inland ice sheet into the Ross Ice Shelf. Scatter from buried crevasses, which we presume were at the surface of the ice stream when it was act...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Retzlaff, Rory, Bentley, Charles R.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1993
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000016440
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000016440
Description
Summary:Abstract Five short-pulse radar profiles were run across the edge of inactive Ice Stream C, one of the “Ross” ice streams that flows from the West Antarctic inland ice sheet into the Ross Ice Shelf. Scatter from buried crevasses, which we presume were at the surface of the ice stream when it was active, creates hyperbolae on the radar records. A density-depth curve and local accumulation rates were used to convert the picked travel times of the apices of the hyperbolae into stagnation ages for the ice stream. Stagnation ages are 130 ± 25 year for the three profiles farthest downstream and marginally less (100 ± 30 year) for the fourth. The profile farthest upstream shows a stagnation age of only ~30 year. We believe that these results indicate a “wave” of stagnation propagating at a diminishing speed upstream from the mouth of the ice stream, and we suggest that the stagnation process involves a drop in water pressure at the bed due to a conversion from sheet flow to channelized water flow.