Determination of Particle Paths using the Finite-Element Method

Abstract Large ice masses contain a wealth of information regarding past climates and atmospheric chemistry. To interpret properly information from ice cores obtained from glaciers, a time-scale for the ice core must be established. A procedure based on the finite-element method, using velocity-pres...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Stolle, D. F. E., Killeavy, M. S.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1986
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000015537
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000015537
Description
Summary:Abstract Large ice masses contain a wealth of information regarding past climates and atmospheric chemistry. To interpret properly information from ice cores obtained from glaciers, a time-scale for the ice core must be established. A procedure based on the finite-element method, using velocity-pressure and stream-function formulations to establish particle paths and hence isochrones, is outlined. Examples are presented which demonstrate the ability of the procedure to predict particle paths and isochrones which can be used to determine the time-scale or to confirm dates established by other methods, of ice cores obtained from large ice masses.