A Closer look at the Proposed Late-Wisconsin-Weichselian Arctic Ice Sheet

Abstract The CLIMAP 18000 years b.p. experiment required reconstructing late-Wisconsin-Weichselian ice sheets. In the Northern Hemisphere, the greatest uncertainty in these reconstructions is the area covered by ice sheets. Two schools of thought exist (Hughes and others, in press). The minimum-ice-...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Fastook, J. L., Sweet, R., Hughes, T. J.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1979
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000015070
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000015070
Description
Summary:Abstract The CLIMAP 18000 years b.p. experiment required reconstructing late-Wisconsin-Weichselian ice sheets. In the Northern Hemisphere, the greatest uncertainty in these reconstructions is the area covered by ice sheets. Two schools of thought exist (Hughes and others, in press). The minimum-ice-sheet school holds that ice sheets originated from present ice caps in the High Arctic islands, but the northern seaward margins of these ice sheets retreated as the southern landward margins advanced. This occurred because northern margins became isolated from sources of precipitation as Arctic seas became permanently ice-covered and the advancing southern margin changed atmospheric circulation patterns. In this view, these ice sheets stay about the same size and migrate southward during an ice age. Northern margins rarely reach sea-level during the later stage of the ice age so no marine portions form and ablation is by melting or sublimation. Marine portions formed only when the ice sheets migrated across shallow seas between the High Arctic islands and the mainland. At the end of the ice age, huge amounts of heat had to be transferred from the tropics to the ice sheets in order to account for late-Wisconsin-Weichselian and Holocene retreat-rates by melting along ice-sheet margins.