Reconstruction and Disintegration of Ice Sheets for the Climap 18000 And 125000 Years b.p. Experiments: Results

Abstract Late-Wisconsin ice sheets were reconstructed for the CLIMAP 18000 years b.p. experiment. This experiment modeled the ice-age steady-state climate using boundary conditions that differed from present ones mainly in Earth-surface albedos, sea-surface areas, and land-surface topography. These...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Denton, G. H., Hughes, T. J., Fastook, J. L., Schilling, D. H., Lingle, C. S.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1979
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000015069
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000015069
Description
Summary:Abstract Late-Wisconsin ice sheets were reconstructed for the CLIMAP 18000 years b.p. experiment. This experiment modeled the ice-age steady-state climate using boundary conditions that differed from present ones mainly in Earth-surface albedos, sea-surface areas, and land-surface topography. These required determinations of the area, volume, and elevation of Late Wisconsin ice sheets. An initial-value finite-difference numerical model for ice-sheet reconstruction was developed from a recursive formula which gave ice thickness for known variations of bed topography and theoretical variations of basal shear stress. Ice thicknesses were calculated in 50 km to 100 km steps along flow lines from margins to domes of late-Wisconsin ice sheets. We assumed that terrestrial margins were along the furthermost moraines, marine margins were along the present 500 m bathymetric contour, domes were centers of maximum post-glacial isostatic rebound, and flow lines were along glacial lineations (eskers, striations, drumlins, etc.) connecting margins to domes. At various locations ice-sheet margins were verified by dated moraines for terrestrial margins and Egga-type moraines for marine margins. Ice-sheet elevations and thicknesses were contoured from profiles reconstructed for 40 Antarctic flow lines and 137 Northern Hemisphere flow lines for a maximum ice-sheet extent, and 86 Northern Hemisphere flow lines for a minimum ice-sheet extent.