Seismic Short-Refraction Studies on the Ross Ice Shelf, Antarctica

Abstract Seismic short-refraction studies were carried out at five stations on the Ross Ice Shelf during the 1976–77 summer season as part of the comprehensive Ross Ice Shelf Geophysical and Glaciological Survey. Measurements of the velocities of compressional waves were made at each location. Compr...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Kirchner, Joseph F., Bentley, Charles R.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1979
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000014830
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000014830
Description
Summary:Abstract Seismic short-refraction studies were carried out at five stations on the Ross Ice Shelf during the 1976–77 summer season as part of the comprehensive Ross Ice Shelf Geophysical and Glaciological Survey. Measurements of the velocities of compressional waves were made at each location. Compressional wave velocities were measured along more than one azimuth at three sites, and shear wave velocities (both components) at two. Travel-time curves were fitted to an exponential expression by means of a non-linear least-squares regression technique. The errors in the apparent velocities are estimated to be about ±50 m s –1 at short distances, diminishing to about ±10 m s –1 near the ends of the profiles. Compressional-wave velocities show only slight variations with azimuth and only over certain depth intervals, showing that constant-velocity surfaces are essentially horizontal. Shear-wave velocities, however, exhibit large variations according to azimuth and polarization, indicating that transverse isotropy is violated at least in the upper 30–40 m of the ice shelf. It is believed that the anisotropy is caused by structural details in the firn perhaps modified by preferred crystal orientation and that it may arise at least partly from anisotropic stresses in the ice shelf.