Forces on Structures Impacted and Enveloped by Avalanches

Abstract A computer code is reported that models two-dimensional flow of a snow-avalanche cross-section over a down-slope structure of arbitrary cross-sectional shape. Impact forces and pressure are predicted, and the flow pattern past the structure may be arrayed pictorially. The model is applied t...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Pedersen, R. R., Dent, J. D., Lang, T. E.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1979
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000014507
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000014507
Description
Summary:Abstract A computer code is reported that models two-dimensional flow of a snow-avalanche cross-section over a down-slope structure of arbitrary cross-sectional shape. Impact forces and pressure are predicted, and the flow pattern past the structure may be arrayed pictorially. The model is applied to the prediction of forces on rectangular obstacles which are of fractional height to the nominal avalanche flow depth for avalanche flow speeds up to 20 m/s. The program is applied to modeling an experiment by Salm of impact of snow blocks upon a slope-normal wall in order to demonstrate the accuracy of the code in comparison to impact-force histories measured by Salm. Difference between the experimental results and the computer simulation is less than 21%, and supporting discussion is given on factors that may account for the difference.