Evaluation of Jet-Roof Geometry for Snow-Cornice Control

Abstract Numerical hydrodynamic simulation of the jet-roof geometry for control of snow deposition to prevent cornice formation at mountain ridges is reported. Different jet-roof geometries are evaluated based upon the extent and size of the ground-surface stagnation region and the recirculation reg...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Dawson, K. L., Lang, T. E.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1979
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000014489
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000014489
Description
Summary:Abstract Numerical hydrodynamic simulation of the jet-roof geometry for control of snow deposition to prevent cornice formation at mountain ridges is reported. Different jet-roof geometries are evaluated based upon the extent and size of the ground-surface stagnation region and the recirculation region to the lee of the roof. Results show that jet-roof length should be of the same order as nominal height of the roof from the ground surface. Efficient placement of the roof is shown to be that with the leading edge directly above the mountain ridge, and roof angle approximately equal to lee slope angle. In numerical simulation of flow-field start-up, near steady-state flow is approached in less than 1.0 s real time, indicating short transient-flow duration.