Rhombus and Rhomboid Parallelogram Patterns on Glaciers: Natural Indicators of Strain

Abstract Subtle rhombus and rhomboid parallelogram patterns occur on Vaughan Lewis Glacier and the Gilkey Glacier System, Juneau Icefield, Alaska. The patterns are within the firn at the firn-ice interface, are formed by differential recrystallization within narrow preferred zones, and are apparentl...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Waag, Charles J., Echelmeyer, Keith
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1979
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000014246
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000014246
Description
Summary:Abstract Subtle rhombus and rhomboid parallelogram patterns occur on Vaughan Lewis Glacier and the Gilkey Glacier System, Juneau Icefield, Alaska. The patterns are within the firn at the firn-ice interface, are formed by differential recrystallization within narrow preferred zones, and are apparently manifestations of stresses transferred upward from the glacier ice. On the glaciers of the Gilkey System the patterns occur where intense lateral shortening is indicated by abrupt convergence of medial moraines and an abundance of extension crevasses. The short axes of the rhombi and the obtuse angle bisectors of the rhomboids are subparallel to the strike of extension crevasses, therefore to the axis of shortening. The long axes of the rhombi and the acute angle bisectors of the rhomboids are parallel to the foliation, and ice-flow direction. The angles of the parallelograms are variable locally, but average 105° and 75°; the variation seems to reflect intensity and duration of stress. Similar parallelograms occur within the troughs of wave bulges below the Vaughan Lewis Icefall. In the wave bulges, the foliation arcs parallel the wave. The long axes of the rhombi and acute angle bisectors of the rhomboids parallel the foliation around the foliation arc. The short axes of the rhombi and the obtuse angle bisectors of the rhomboids parallel the strikes of radial crevasses, are perpendicular to the direction of extension, and form a fan divergent down-stream. The precise mechanisms and conditions of formation of the parallelograms are not yet understood. Preliminary strain-rate measurements suggest, however, that correlations exist between the orientations of the principal strain-rates and the axes of the patterns, and between the magnitude of the strain-rates and the axial lengths of the patterns.