Application of Numerical Transient Fluid Dynamics to Snow Avalanche Flow. Part I. Development of Computer Program Avalnch

Abstract A two-dimensional, transient fluid-dynamics computer code has been modified for specific application to the avalanche-runout problem. This code, called AVALNCH, permits the separation of path geometry effects from such flow factors as friction and viscosity. The longitudinal profile of the...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Lang, T. E., Dawson, K. L., Martinelli, M.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1979
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000014088
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000014088
Description
Summary:Abstract A two-dimensional, transient fluid-dynamics computer code has been modified for specific application to the avalanche-runout problem. This code, called AVALNCH, permits the separation of path geometry effects from such flow factors as friction and viscosity. The longitudinal profile of the avalanche path is divided into cells, 10 to 20 m long, each of which can be assigned specific values for slope gradient, surface friction, and internal kinematic viscosity. The program gives average avalanche speed cell-by-cell down the path and the location and depth of avalanche debris. Internal kinematic viscosity and surface friction were modeled on an avalanche path of simple geometry and were found to be of about equal significance in predicting runout distance. Additionally, surface friction is represented by an exponentially increasing function as speed decreases in the runout zone, in order to model observed avalanche terminal-motion characteristics. Program AVALNCH is reduced to a basic algorithm that is efficient to run, and contains the essential mechanics to model avalanche flow accurately. The most pressing need is for more physical data to permit the matching of program output to observed results under a variety of conditions.