The Application of Fracture Mechanics to the Problem of Crevasse Penetration

Abstract The elastic stress intensity factor is a parameter used in fracture mechanics to describe stress conditions in the vicinity of the tip of a sharp crack. By superimposing solutions of stress intensity factors for different loading conditions, equations are derived which model crevasses in ic...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Author: Smith, R. A.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1976
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000013563
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000013563
Description
Summary:Abstract The elastic stress intensity factor is a parameter used in fracture mechanics to describe stress conditions in the vicinity of the tip of a sharp crack. By superimposing solutions of stress intensity factors for different loading conditions, equations are derived which model crevasses in ice. Solutions are presented for the theoretical depth of isolated crevasses, free from or partially filled with water. Close agreement exists with a previous calculation by Weertman using a different technique. The effect of crevasse spacing is investigated and it is demonstrated that closer spacing always reduces crevasse depth, but over a wide range of spacing the predicted variation in depth is slight.